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Abstract

We prove that the bundles of non-holonomic and semi-holonomic second-order frames of a real
or complex manifoldM can be obtained as extensions of the bundleF 2(M) of second-order jets of
(holomorphic) diffeomorphisms of(Kn,0) intoM, whereK = R orC. If dimK(M) = n andF(M)
is the bundle ofK-linear frames ofM we will associate to the tangent bundleE = T(FM) two new
bundlesStn(E) andGn(E)with fibers of type the Stiefel manifoldStn(V) and the Grassmann man-
ifold Gn(V), respectively, whereV = Kn⊕ gl (n,K). The natural projection ofStn(E) ontoGn(E)
defines a GL(n,K)-principal bundle. We have found that the subset ofGn(E) given by the horizon-
tal n-planes is an open sub-bundle isomorphic to the bundleF̂ 2(M) of semi-holonomic frames of
second-order ofM. Analogously, the subset ofStn(E) given by the horizontaln-bases is an open
sub-bundle which is isomorphic to the bundleF̃ 2(M) of non-holonomic frames of second-order of
M. Moreover the restriction of the former projection still defines a GL(n,K)-principal bundle. Since
a linear connection is a horizontal distribution ofn-planes invariant under the action of GL(n,K) it
therefore determines a GL(n,K)-reduction of the bundlêF 2(M), in a bijective way. This is a new
proof of a theorem of Libermann.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

LetM be a real or complex differentiable manifold with dimK(M) = n(K = R orC).
Jets and jet bundles onM were first defined and studied by Ehresmann[4–8]. Let us recall
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that a holonomic frameu of orderr in x ∈ M (or simply, a frame of orderr) is essentially
the Taylor polynomial of orderr of a K-diffeomorphismf : (Kn,0) → (M, x) (these
notations mean thatf is bi-holomorphic ifK = C and thatf maps an open neighborhood
of 0 ∈ K

n onto an open neighborhood ofx ∈ M, with f(0) = x). In other words,u
is the jetjr0,xf . Holonomic frames of orderr form a principal bundleFr(M) = F r(M)
overM with structure groupGr(n,K). The elements of the group are the jetsjr0,0h with
h : (Kn,0)→ (Kn,0) aK-diffeomorphism. Group law is jet composition and the identity
element iser = jr0,0(idKn). The groupGr(n,K) is complex ifK = C and the bundle

Fr(M) is complex ifM is a complex manifold. Ifr = 1 thenG1(n,K) is just the general
linear group GL(n,K) andF1(M) = F(M) = F(M) = the bundle ofK-linear frames
on M.

The bundlesF̃ r(M) = F̃ r(M) andF̂ r(M) = F̂ r(M) of non-holonomic and semi-holo-
nomic frames of any orderr > 1 were introduced by Ehresmann[9,10]. Among the con-
tributors who studied and developed their properties we must cite Libermann[24,25]and
Yuen[31]. It is customary to omit the wordholonomicwhen one only deals with the smaller
bundleFr(M) (see, for example,[17,20,29]).

Second-orderG-structures of non-holonomic, semi-holonomic and holonomic type (that
is to say,G-reductions of the respective frame bundle) are important in differential geom-
etry and continuum mechanics. Let us merely point out that non-holonomic second-order
G-structures have been applied to continuum mechanics by Epstein and de León to develop
the study of generalized Cosserat media and generalized liquid crystals in[12,13,21,22].
On the other hand, a theorem of Libermann[24] states that every linear connection on a real
manifold can be characterized as a GL(n,R)-reduction of the bundle of semi-holonomic
second-order frames onM, extending a previous result of Kobayashi for torsionless con-
nections[16–18]. Second-order (holonomic)G-structures associated to real or complex
semisimple graded Lie algebras were studied by Ochiai[26,27], generalizing the previous
theory of projective and conformal structures of Weyl and Cartan, which are holonomic
second-orderG-structures, as it is shown in Chapter IV of Kobayashi’s book[17]. A dif-
ferent class of second-order (holonomic)G-structures on real contact manifolds was found
by Burdet and Perrin[3].

Our first main result isTheorem 8.2. It says that the principal bundlesF̃2(M) andF̂2(M)

of non-holonomic and semi-holonomic frames of second-order onM are, respectively, iso-
morphic to the bundlesF2(M)G̃

2(n,K) andF2(M)Ĝ
2(n,K) obtained by extending the group

G2(n,K) of the bundleF2(M) of all holonomic second-order frames ofM to the corre-
sponding larger structure groupsG̃2(n,K) andĜ2(n,K) of those bundles. It characterizes
them in a simple way, allowing us to extend algebraically any local trivialization ofF2(M)

to both. This fact allows us to outline a new proof of Libermann’s theorem, at the end of
this paper.

According to Ehresmann[9], non-holonomic second-order frames are 1-jets of (local)
sections ofM intoF(M). Yuen[31] considered second-order non-holonomic frames on a
real manifoldM as 1-jets of bundle isomorphisms of(F(Rn), e1) in (F(M), z) (see also
[12]). Their respective constructions lead to principal bundles overM which are isomor-
phic. Complex data lead to holomorphic bundles. On the other hand, each semi-holonomic
frame has associated ann-dimensional horizontal space[31, p. 13], a fact further studied
by de León and Ortacgil[23], who proved that a semi-holonomic frame of second-order
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on a real manifoldM can be considered as an element ofF(FM) defined by its associated
horizontal space. In this way, they constructed a neŵG2(n,K)-principal bundleĤ2(M)→
M which is a regular submanifold ofF(FM), proving that it is isomorphic to the bundle
F̂2(M) → M of semi-holonomic frames of second-order onM. We have observed that
their bundleĤ2(M) is holomorphic ifM is complex. We have also adapted their idea to
non-holonomic frames of second-order, obtaining them as elements ofF(FM) defined by
bases of horizontal spaceson a real or complex manifoldM. In this way, we have con-
structed a new bundlẽH2(M) onM that is a regular submanifold ofF(FM), and a natural
projectionπH : H̃2(M) → Ĥ2(M) which is a GL(n,K)-principal bundle isomorphic to
F̃ 2(M) → F̂2(M) (Theorems 4.1 and 5.2). Bearing again in mind the same idea of using
horizontaln-bases and horizontaln-planes inF(M), we will obtain other new models for
non-holonomic and semi-holonomic frames of second-order ofM as open sub-bundles of
what we have called theStiefel and Grassmann tangent bundlesofF(M). This construction
is based on a geometric approach to coordinates in Grassmann manifolds (considered as
GL(q,K)-homogeneous spaces) which, as far as we know, is due to Hangan[15]. We will
give it in a way slightly different to his, and then we will associate to the tangent bundle
E = T(N) of an arbitrary real or complex manifoldN theStiefel tangent bundlesof N and
the Grassmann tangent bundlesof N. For each 0< q < dimKN they are, respectively,
defined as follows:

Stq(E) =
⋃
x∈N
Stq(Ex), Gq(E) =

⋃
x∈N
Gq(Ex),

whereEx = TxN is the fiber onx ∈ N. Given a real or complex manifoldM we will just
need the particular caseq = n = dimK(M),N = F(M) and therefore dimK(N) = n+ n2.
Let StnHFM be the set of alln-bases of all horizontal tangentn-planes at the points of
F(M) andGnHFM the set of all horizontal tangentn-planes at the points ofF(M). We
will prove (Theorem 3.1) thatStnHFM → M andGnHFM → M are open sub-bundles
of Stn(E) → M andGn(E) → M, respectively. Moreover, the natural projectionπH :
StnHFM → GnHFM is also a GL(n,K)-principal bundle. It induces a naturally isomor-
phic GL(n,K)-principal bundle structurẽF 2(M) → F̂2(M) (Theorem 5.2). These facts
andTheorem 6.1yield isomorphisms between the bundleF̃ 2(M)→ M of non-holonomic
frames of second-order onM and any of the bundlesStnHFM → M, H̃2(M) → M,
whereas the bundlêF2(M)→ M of semi-holonomic frames of second-order onM is iso-
morphic to any of the bundleŝH2(M)→ M andGnHFM → M (Theorem 6.2). Using our
bundleGnHFM → M of horizontaln-planes we will easily obtain that a (holomorphic)
linear connection on a real (complex) manifold is a GL(n,K)-reduction of the isomorphic
bundleF̂2(M) → M of semi-holonomic frames of second-order onM (Theorem 7.1), a
result of Libermann quoted before, which will be also deduced usingTheorem 8.2.

A warning about notations: for a complex manifoldM, its tangent bundleT(M) is a
holomorphic vector bundle and the GL(n,C)-principal bundle denoted byF(M) = F(M)
contains onlyC-linear frames and it is strictly contained in the the GL(2n,R)-principal
bundle ofR-linear frames on the underlying real manifoldMR = M. Analogously for
any kind of higher order frames. The properties that we have dealt with are formally almost
identical for real or complex data. But the complex case deserves a mention, mainly because
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holomorphic connections do not always exist,[1]. It is clear how to adapt things when data
are real analytic instead of holomorphic.

We thank Professor J.A. Oubiña for his technical advice and to Professor M. de León for
some useful conversations on the subject. His bundleH2(M) ⊂ F(FM) in [23] has been
denotedĤ2(M) by us.

2. Stiefel and Grassmann tangent bundles over a manifold

For the sake of completeness, we shall first review what Grassmann and Stiefel manifolds
are. We will need them in our treatment of second-order non-holonomic and semi-holonomic
frame bundles on a real or complex manifold.

Letp, q ∈ N,1 ≤ p, q ≤ m,p+ q = m, K = R or C andMm×q(K) = m× qmatrices
with components inK. A q-basis ofKm (or q-reference ofKm, not to be confused with a
reference ofkth order) is an element ofKm × · · ·q) × K

m with linearly independent vector
components. In an equivalent way, aq-basis is an injectiveK-linear map fromK

q into
K
m. The Stiefel manifoldStq(Km) is the set of all theq-bases ofKm. It is an open set in

K
m× · · ·q)× K

m. If we fix a basisB = {e1, . . . , ep, ep+1, . . . , em} of K
m then anyq-basis

{wp+1, . . . , wm} of K
m can be expressed in the formwj = nijei, j = p+ 1, . . . , m. Thus,

B defines a global chart inStq(Km) as follows: If aq-dimensional subspaceW is generated
by aq-referenceBW = {wp+1, . . . , wm} then we sendBW to them×qmatrixNBW = [nij],
which has rankq, and we will writeW = 〈BW 〉. Let us recall that twoq-references are
considered equivalent if they generate the sameq-dimensional vector subspace (orq-plane,
for short). The quotient spaceGq(Km) is the Grassmann manifold and, therefore, it is the
set of allq-planes ofKm with the quotient topology. It is an analytical real or complex
manifold of real or complex dimensionpq. Coordinates onGq(Km) are classically given
as follows: Let us denote asσ an increasing sequence 1≤ σ1 < σ2 < · · · < σq ≤ m of
q = m − p integer numbers. Associated toσ we can define the subsetA(σ,B) of Gq(Km),
formed by all theq-planesW = 〈BW 〉 such that the rowsσ1, σ2, . . . , σq of the previous
matrix NBW are linearly independent. This subsetA(σ,B) is an open set in the quotient
topology ofGq(Km). Furthermore, ifW = 〈BW 〉 = 〈{wp+1, . . . , wm}〉 ∈ A(σ,B), then the
matrixNσBW = [nσij ] ∈Mq×q(K), whoseith row is theσith row ofNBW , is non-singular.

The matrix productNBW (N
σ
BW
)−1 is anm × q-matrix whoseσith row coincides with the

ith row of the identity matrixI ∈Mq×q(K), wherei = 1, . . . , q. The remainingp rows in
NBW (N

σ
BW
)−1 form (by definition) thep×q real or complex matrixX of coordinates of the

q-planeW , that can be denoted asX = Φ(σ,B)(W), since they depend both on the sequenceσ

and on the basisB chosen inKm; notice, however, thatX does not depend on theq-basisBW
chosen inW . If Σ denotes the set of increasing sequences 1≤ σ1 < σ2 < · · · < σq ≤ m, it
is well known that the family∪σ,B{(A(σ,B), Φ(σ,B))} (whereσ ∈ Σ andB runs through all
bases ofKm) is an analytic atlas, since the more general change of coordinates is given by

X→ (AX+ B)(CX+D)−1

for suitable matricesA,B,C andD (see[15] for details). It is just the atlas thatGq(Km) has
as a homogeneous space under the natural left action of GL(n,K). The natural projection
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π : Stq(Km) → Gq(Km) sending aq-basisBW to theq-planeW = 〈BW 〉 (i.e., sending
each injective linear mapf : K

q → K
m to its imageW = f(Kq)) defines a structure of

GL(q,K)-principal bundle. In coordinates, the action of GL(q,K) onStq(Km) is expressed
with the matrix product:

(BW,L) =
([
β

α

]
, L

)
→ BWL =

[
βL

αL

]
,

where we have identified aq-basisBW with them× q matrixNBW of coordinates of their
column vectors in a fixed basisB of K

m,β andα being, respectively, the submatrices formed
by the firstp rows and the lastq rows. If we consider elements inStq(Km) as injective linear
maps fromK

q to K
m, then the action of GL(q,K) onStq(Km) is just map composition.

Now we will detail Hangan’s equivalent construction of the previous atlas ofGq(Km) in a
way slightly different to his (see[15] and also[30]). We will use it in the next section. LetU
be a vector subspace ofK

m of dimensionp = m−q and letB = {e1, . . . , ep, ep+1, . . . , em}
be a basis ofKm adapted toU, that is to say,U = 〈{e1, . . . , ep}〉. We will denote asSU the
set of allq-planes ofKm which are supplementary with respect toU

SU = {W ∈ Gq(Km);U ⊕W = K
m}.

It is easy to see thatπ−1(SU) = {BW ;W ∈ SU} is open inStq(Km) and thereforeSU is an
open subset inGq(Km). Let us remark that, for allW ∈ SU , we have immediately that:

(i) givenv ∈ 〈{ep+1, . . . , em}〉, there is a uniqueu ∈ U such thatv+ u ∈ W ;
(ii) there exist uniqueup+1, . . . , um ∈ U such that{ep+1 + up+1, . . . , em + um} is a basis

ofW (in an equivalent way, there is a unique basis{wp+1, . . . , wm} ofW such that for
all i = p+ 1, . . . , m iswi = ei + ui with ui ∈ U).

Proposition 2.1. The open subsetSU of the Grassmann manifoldGq(Km) is homeomorphic
to the pq-dimensional vector subspaceU × · · ·q) × U of K

m × · · ·q) × K
m.

Proof. Let us defineΨ : U × · · ·q) × U → SU by

Ψ(up+1, . . . , um) = 〈{ep+1 + up+1, . . . , em + um}〉.
It follows from the previous remark that the mapΨ is surjective. On the other hand, if
up+1, . . . , um, ũp+1, . . . , ũm ∈ U satisfy

〈{ep+1 + up+1, . . . , em + um}〉 = 〈{ep+1 + ũp+1, . . . , em + ũm}〉,
then, for everyi ∈ {p+ 1, . . . , m}, it is

ei + ui = αp+1(ep+1 + ũp+1)+ · · · + αm(em + ũm).
Using thatKm = U ⊕ 〈{ep+1, . . . , em}〉 we get

ei = αp+1ep+1 + · · · + αmem, ui = αp+1ũp+1 + · · · + αmũm.
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Sinceep+1, . . . , em are linearly independent, we must haveαi = 1 andαj = 0 if j �= i;
therefore

ui = ũi.
Thus, the mapΨ is injective too. It is immediate that bothΨ andΨ−1 are continuous. �

Definition 2.2. LetW ∈ SU ,W = Ψ(up+1, . . . , um). If uj = mijei, j = p+ 1, . . . , m, we
will say that the matrix

MW = [mij] ∈Mp×q(K)

is the matrix of coordinates ofW .

Clearly,MW depends on the chosen basisB adapted toU. It is also clear that

Proposition 2.3. Let U be a p-dimensional vector subspace ofK
m and letB be a basis of

K
m adapted to U. The mappingΦ(U,B) : SU →Mp×q(K) defined by

Φ(U,B)(W) = MW
is a chart inGq(Km). We get the previous atlas ofGq(Km) varying U andB in all possible
ways.

Let us fix ap-dimensional vector subspaceU of K
m and a basisB = {e1, . . . , ep,

ep+1, . . . , em} of K
m adapted toU. If {wp+1, . . . , wm} is a basis ofW = Ψ(up+1, . . . , um)

∈ SU , with

wj =
p∑
i=1

βijei +
m∑

i=p+1

αijei, j = p+ 1, . . . , m,

we will denoteα = [αij] ∈ Mq×q(K), β = [βij] ∈ Mp×q(K). It is immediate that the

numbersβij andαij are unique and the matrixα = [αij] is non-singular. Moreover, we have

Lemma 2.4. The matrixMW of coordinates of the q-plane W is

MW = βα−1.

Remark 2.5. Conversely, fixed a basisB = {e1, . . . , ep, ep+1, . . . , em} of K
m adapted to

U, if β = [βij] ∈Mp×q(K) andα = [αij] ∈Mq×q(K) is non-singular, then, definingwj,
j = p+ 1, . . . , m, as above, it is clear thatBW = {wp+1, . . . , wm} is aq-basis generating
aq-planeW ∈ SU with coordinatesMW = βα−1. Additionally, the map sendingBW to[

β

α

]
∈Mm×q(K)

is a diffeomorphism ofπ−1(SU) onto an open subset ofMm×q(K).
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Let nowM be a real or complex manifold of dimensionm andπE : E→ M be a vector
bundle of fiberF = K

r. Given 0< q < r, we define the bundles

Stq(E) =
⋃
x∈M
Stq(π

−1
E (x)), Gq(E) =

⋃
x∈M
Gq(π

−1
E (x))

and the projections

πSt : BWx ∈ Stq(E)→ x ∈ M, πG : Wx ∈ Gq(E)→ x ∈ M,
whereWx = 〈{w1, . . . , wq}〉 ∈ Gq(π−1

E (x)) is generated by theq-referenceBWx =
{w1, . . . , wq}. Let τ : π−1

E (A) → A × F be a local trivialization ofE andp : (x, v) ∈
A× F → v ∈ F . Then

π−1
St (A) = Stk(E)/A =

⋃
x∈A
Stq(π

−1
E (x)),

π−1
G (A) = Gk(E)/A =

⋃
x∈A
Gq(π

−1
E (x)),

and the maps defined by

Stq(τ) : BWx ∈ π−1
St (A)→ (x, {p ◦ τ(w1), . . . , p ◦ τ(wq)}) ∈ A× Stq(F),

Gq(τ) : Wx ∈ π−1
G (A)→ (x, 〈{p ◦ τ(w1), . . . , p ◦ τ(w1)}〉) ∈ A× Gq(F)

are local trivializations ofStq(E) andGq(E). Moreover, GL(q,K) acts freely onStq(E) as
follows: if u : K

q → Ex ≡ K
m is aq-reference anda ∈ GL(q,K), then,ua = u ◦ a. The

map

πStG : BWx ∈ Stq(E)→ Wx ∈ Gq(E)
defines a structure of GL(q,K)-principal bundle. It is holomorphic ifK = C,M is complex
andπE : E→ M is holomorphic.

Definition 2.6. If E = TM, we will say thatStq(TM) andGq(TM) are, respectively, the
Stiefel and Grassmann tangent bundles ofq-references andq-planes overM, 0< q < m =
dimK(M).

Since the group GL(m,K) acts on the right onF(M) and on the left on bothStq(Km)
andGq(Km), we can consider the associated bundlesF(M) ×GL(m,K) Stq(K

m) of fiber
Stq(Km) andF(M)×GL(m,K)Gq(K

m) of fiberGq(Km), induced by those actions. They are,
respectively, isomorphic toStq(TM) andGq(TM). Let us point out thatGq(TM) is denoted
asGq(M) in [28].

3. Horizontal spaces and bases of horizontal spaces

Now we will introduce the open submanifoldStnHFM ⊂ Stn(T(FM)) of horizontal
n-bases onF(M) and the open submanifoldGnHFM ⊂ Gn(T(FM)) of horizontaln-planes
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onF(M). We will later prove that they are in fact principal bundles overM, respectively
isomorphic to the bundles of non-holonomic and semi-holonomic second-order frames on
M. Each (holomorphic) chartφ : x ∈ A→ [xi] ∈ φ(A), defined on an open subsetA of a
real (complex) manifoldM, induces a (holomorphic) trivialization chartz ∈ (π1

0)
−1(A)→

(xi, xij) ∈ φ(A) × GL(n,K) on the bundleπ1
0 : F(M) → M of K-linear frames onM,

satisfying

π1
0(z) = x ≡ [xi], z(Ej) = xij

∂

∂xi
(x),

where{E1, . . . , En} is the usual basis ofKn. The vector spaceTz(FM) is isomorphic
to K

n ⊕ gl(n,K), wheregl(n,K) = Mn×n(K) = Hom(Kn,Kn) is the Lie algebra of
GL(n,K). As in Section 2, we have two associated bundles

Stn(T(FM)) =
⋃

z∈F(M)
Stn(Tz(FM)), Gn(T(FM)) =

⋃
z∈F(M)

Gn(Tz(FM)),

whereStn(Tz(FM)) and Gn(Tz(FM)) denote, respectively, the Stiefel manifold ofn-
references ofTz(FM) and the Grassmann manifold of alln-planes inTz(FM). The natural
projection

πStG : BW ∈ Stn(T(FM))→ W ∈ Gn(T(FM))
determines a structure of GL(n,K)-principal bundle. Let us fix inTz(FM) the basis

B =
{
∂

∂xij
(z); i, j = 1, . . . , n

}⋃{
∂

∂xk
(z); k = 1, . . . , n

}
,

and let us choose

U = Vz =
〈{

∂

∂xij
(z); i, j = 1, . . . , n

}〉
,

the vertical tangent space atz ∈ F(M). Bearing in mind previous notations, we have that
the basisB is adapted toU, that SU = SVz is the set of horizontaln-spaces atz (with

dimK(U) = n2) and thatπSt
−1

G (SU) is the set of all bases of all horizontaln-spaces at
z ∈ F(M). Let us define

StnHFM =
⋃

z∈F(M)
πSt

−1

G (SVz), GnHFM =
⋃

z∈F(M)
SVz .

If BHz = {h1, . . . , hn} is a basis of a horizontaln-spaceHz = 〈BHz〉 then

hj = αij
∂

∂xi
(z)+ βki j ∂

∂xki
(z), j = 1, . . . , n,

whereα = [αij] ∈ GL(n,K) andβ = [βki j] ∈ Mn2×n(K). Notice thatMn2×n(K) is
isomorphic to the vector space Hom(Kn,Hom(Kn,Kn)). For L ∈ GL(n,K), the hor-
izontal basesBHz andBHzL (considered as injectiveK-linear maps) can be identified
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with matrices

BHz =
[
β

α

]
and BHzL ≡

[
β

α

]
≡ L =

[
βL

αL

]
,

giving rise to a free action of GL(n,K) onStnHFM .

Theorem 3.1. The projectionsStnHFM → M andGnHFM → M are, respectively, open
sub-bundles ofπSt : Stn(T(FM)) → M andπG : Gn(T(FM)) → M. Furthermore, the
restrictionπH of the natural projectionπStG : Stn(T(FM)) → Gn(T(FM)) determines a
GL(n,K)-principal bundle

πH : StnHF(M) → GnHF(M).

Proof. If τ : π−1
T(FM)(A) → A × (Kn ⊕ gl(n,K)) is the trivialization ofT(FM) induced

by a chart(A, φ) ofM, then the maps

Stn(τ) : Stn(T(FM))/A → (π1
0)

−1(A)× Stn(Kn ⊕ gl(n,K)),
Gn(τ) : Gn(T(FM))/A → (π1

0)
−1(A)× Gn(Kn ⊕ gl(n,K)),

defined as inSection 2, are trivializations ofStn(T(FM)) andGn(T(FM)). Moreover, if
we now callU = gl(n,K), andπ : Stn(Kn ⊕ gl(n,K))→ Gn(Kn ⊕ gl(n,K)) is the usual
projection, then

Stn(τ)(StnHF(M)/A) = (π1
0)

−1(A)× π−1(SU),

Gn(τ)(GnHF(M)/A) = (π1
0)

−1(A)× SU.
The first assertion of the theorem then follows from this and fromPropositions 2.1 and 2.3.
The second one is true because bases of horizontaln-spaces are horizontal and hence

πSt
−1

G (GnHF(M)) = StnHF(M).
Furthermore, we have seen that the right action of GL(n,K) on Stn(T(FM)) pre-
servesStnHFM . Therefore, it determines a GL(n,K)-principal bundleπH : StnHF(M) →
GnHF(M). In these trivializations, the coordinates of the horizontaln-basis BHz =
{h1, . . . , hn} are

(xi, xij, α
i
j, β

ij
k) = ([xi], X, α, β) ∈ φ(A)× GL(n,K)× GL(n,K)×Mn2×n(K),

whereas the coordinates of the horizontaln-planeHz = 〈BHz〉 = 〈{h1, . . . , hn}〉 are

([xi], X, βα−1) ∈ φ(A)× GL(n,K)×Mn2×n(K).

Notice that, in the chosen basisB of Tz(FM), the matrixMHz of coordinates ofHz in
the Grassmann manifoldGn(Tz(FM)) is, by virtue ofLemma 2.4, justMHz = βα−1 ∈
Mn2×n(K). The projectionπH is expressed in coordinates as

([xi], X, α, β)→ ([xi], X, βα−1). �
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4. Linear frames on F(M) defined by horizontal bases and
by horizontal spaces

In this section we will express the bundlesStnHFM → M andGnHF(M) → M in
terms ofK-linear frames on the manifoldF(M). Moreover, we will add to the manifold
Ĥ2(M) (=H2(M) in [23]) a new manifoldH̃2(M) projecting overĤ2(M) in such a way
that H̃2(M) → Ĥ2(M) will become a GL(n,K)-principal bundle isomorphic toπH :
StnHFM → GnHF(M). LetHz ⊂ Tz(FM) be a horizontaln-space atz ∈ F(M) and let
BHz = {h1, . . . , hn} be an arbitrary basis ofHz. We will now associate toBHz a K-linear
frameũ(BHz) given by

ũ(BHz) : (Ej, Y) ∈ K
n ⊕ gl(n,K)→ hj + Y∗

z ∈ Tz(FM),
where{Ej} is the usual basis ofKn andY∗ the fundamental vector field corresponding to
Y = [Yij] ∈ gl(n,K). Let (xi, xij) be the coordinates ofz ∈ F(M) and{Eij} the usual basis
of gl(n,K). If

ũ(BHz)(Ej) = αij
∂

∂xi
(z)+ βki j ∂

∂xki
(z),

ũ(BHz)(E
i
j) = γkij

∂

∂xki
(z)+ εkl ij

∂

∂xkl
(z),

then it follows that allγkij = 0, sinceũ(BHz)(E
i
j) = (Eij)∗z is vertical. Moreover,

Y∗
z = (xisYsj )

∂

∂xij
(z)

and therefore

εkl ij = xkiδlj.

Let H̃2(M) ⊂ F(FM) be the set of all frames overF(M) defined byn-bases of horizontal
n-planes in the way described before, that is to say,

H̃2(M) = {ũ(BHz);BHz ∈ StnHFM}.
An element inF(FM) with coordinates(xi, xij, α

i
j, β

hi
j, γ

h
ij , ε

hk
ij ) belongs toH̃2(M) if

and only if(xi, xij, α
i
j, β

ij
k, γ

i
jk , ε

hk
ij ) = (xi, xij, αij, βij k,0, xhiδkj). In particular, associ-

ated with each chart(A, φ) onM, there is a local coordinate system inH̃2(M) of the form
(xi, xij, α

i
j, β

ij
k). This shows that̃H2(M) is a regular submanifold ofF(FM).

Let us recall that the canonical formθ ofF(M) sendsv ∈ Tz(FM) toθ(v) = z−1(π1
0∗(z) ·

v) ∈ K
n. If Hz ⊂ Tz(FM) is a horizontaln-plane, the restrictionθ/Hz : Hz → K

n is an
isomorphism andBHz = {θ−1

/Hz
(E1), . . . , θ

−1
/Hz
(En)} is a basis ofHz. Just as it is done in

[14,23,31], we can now associate to each horizontaln-planeHz ⊂ Tz(FM) a K-linear
frameû(Hz) at z ∈ F(M), given by

û(Hz) = ũ(BHz),
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that is to say,

û(Hz) : (ξ, Y) ∈ K
n ⊕ gl(n,K)→ h+ Y∗

z ∈ Tz(FM),
whereh ∈ Hz is determined byθ(h) = ξ. Let Ĥ2(M) ⊂ F(FM) be the set defined by

Ĥ2(M) = {û(Hz);Hz ∈ GnHFM}.
We have said that̂H2(M) was constructed, and denotedH2(M), in [23]. An element of
F(FM) with local coordinates(xi, xij, α

i
j, β

ij
k, γ

i
jk , ε

hk
ij ) belongs toĤ2(M) if and only

if

(xi, xij, α
i
j, β

ij
k, γ

i
jk , ε

hk
ij ) = (xi, xij, xij, βij k,0, xhi, δkj).

In particular, associated with each chart(A, φ) onM, there is a local coordinate system
in Ĥ2(M) of the form(xi, xij, β

ij
k). Hence,Ĥ2(M) is a regular submanifold ofF(FM).

As well notice that an element(xi, xij, α
i
j, β

ij
k) ∈ H̃2(M) belongs toĤ2(M) if and only if

αij = xij. It is so because

θ−1
/Hz
(Ej) = xij

∂

∂xi
(z)+ βkl j ∂

∂xkl
(z), j = 1, . . . , n.

Let πH : H̃2(M)→ Ĥ2(M) be given byπH(ũ(BHz)) = û(Hz). If ũ(BHz) ∈ H̃2(M) and

ũ(BHz)(Ej) = αij
∂

∂xi
(z)+ βkl j ∂

∂xkl
(z)

then, ifL = [Lij] ∈ GL(n,K), we defineũ(BHz)L by

(ũ(BHz)L)(Ej, Y) = h̃j + Y∗
z , j = 1 . . . , n,

where

h̃j = (αirLrj)
∂

∂xi
(z)+ (βkl sLsj)

∂

∂xkl
(z).

Theorem 4.1. The mapsπH : StnHFM → GnHFM andπH : H̃2(M) → Ĥ2(M) are
isomorphicGL(n,K)-principal bundles. In fact,

(ũ, û) : (StnHFM,GnHFM)→ (H̃2(M), Ĥ2(M))

is an isomorphism of principal bundles.

Proof. For everyL = [Lij] ∈ GL(n,K) we have that̃u(BHzL) = ũ(BHz)L. Furthermore,
both ũ andû are diffeomorphisms, because, in local coordinates induced by a chart ofM,
ũ is the identity, whereaŝu is given by

û([xi], X,MHz) = ([xi], X, (MHz)X),
where(xi, xij) are the coordinates ofz, andMHz is the matrix of coordinates ofHz in the
Grassmann manifoldGn(Tz(FM)). �
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5. Non-holonomic and semi-holonomic frames of second-order

Now we will recall the definition of the manifolds̃F 2(M) andF̂2(M) of non-holonomic
and semi-holonomic frames of second-order over a real (or complex) manifoldM. Then
we will prove that the projectionπH : StnHFM → GnHFM , introduced inSection 3,
which sends a horizontaln-basis to its corresponding horizontaln-plane, induces another
projectionπ : F̃2(M) → F̂2(M), which will become an isomorphic GL(n,K)-principal
bundle.

Definition 5.1. If j10,zϕ is the 1-jet of aK-differentiable mapϕ : (Kn,0) → (F(M), z)

such thatπ1
0 ◦ϕ is aK-diffeomorphism, we will say thatj10,zϕ is a non-holonomic frame of

second-order at the pointx = π1
0(z) ∈ M. If, additionally,ϕ(0) = z = j10,x(π1

0 ◦ ϕ), then it

is said thatj10,zϕ is a semi-holonomic frame of second-order at the pointx = π1
0(z) ∈ M.

The setF̃ 2(M) of all non-holonomic frames of second-order onM is the total space of
a principal bundle overM, with projectionπ̃2

0 : j10,zϕ ∈ F̃2(M) → x = π1
0(z) ∈ M and

group

G̃2(n,K) = GL(n,K)× GL(n,K)× L2(n,K),

whereL2(n,K) denotes the additive group ofK-bilinear maps fromK
n×K

n intoK
n. Since

gl(n,K) = Hom(Kn,Kn), we can identifyf ∈ L2(n,K) with f̄ ∈ Hom(Kn, gl(n,K))
given byf̄ (w)(v) = f(v,w). If {Ei} is the usual basis ofKn and{εi} its dual basis, then
the linear mapsEij = Ei ⊕ εj form the usual basis of Hom(Kn,Kn) = Mn×n(K). If
f̄ (Ek) = f ijk Eij andf(Ej,Ek) = f ijkEi, thenf

ij
k = f ijk. The product inG̃2(n,K) is given

by

(a, b, f)(a′, b′, f ′) = (a ◦ a′, b ◦ b′, a ◦ f ′ + f ◦ (a′ × b′)).
If K = C then G̃2(n,C) is a complex Lie group. Letϕ : (Kn,0) → (F(M), z) be a
K-differentiable map such thatπ1

0 ◦ ϕ is aK-diffeomorphism. In local coordinatesϕ(ra) ≡
(ϕi(ra), ϕij(r

a)), hence the coordinates ofj10,zϕ are given by(
ϕi(0), ϕij(0),

∂ϕi

∂rj
(0),

∂ϕkl

∂rj
(0)

)
,

so in F̃ 2(M) we have a system of local coordinates of the form(xi, xij, y
i
j, x

kl
j), with

(xi, xij) the coordinates ofz = ϕ(0). Furthermore,

ϕ∗(0) · ∂
∂rj
(0) = ∂ϕi

∂rj
(0)

∂

∂xi
(z)+ ∂ϕ

k
l

∂rj
(0)

∂

∂xkl
(z) = yij

∂

∂xi
(z)+ xkl j ∂

∂xkl
(z)

with the matrix [yij] non-singular, becauseπ1
0 ◦ ϕ is a diffeomorphism.

Let us considerj10,zϕ ∈ F̃2(M). The semi-holonomy conditionϕ(0) = z = j10,x(π1
0 ◦ ϕ)

is characterized in local coordinates by the equalityyij = xij. Hence, there is in̂F2(M) ⊂
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F̃2(M) a system of local coordinates of the form(xi, xij, x
kl
j ). Therefore,F̂2(M) is a regular

submanifold ofF̃ 2(M). The restriction̂π2
0 of π̃2

0 is the principal bundlêπ2
0 : F̂2(M)→ M

of all semi-holonomic frames of second-order overM. Its structure group is

Ĝ2(n,K) = GL(n,K)× L2(n,K).

It is a closed Lie subgroup of̃G2(n,K), and its group law is given by

(a, f)(a′, f ′) = (a ◦ a′, a ◦ f ′ + f ◦ (a′ × a′)).
For K = C we have thatĜ2(n,C) is a complex Lie subgroup of̃G2(n,C). On the other
hand,

G2(n,K) = {(a, f) ∈ Ĝ2(n,K); f symmetric}
is a closed Lie subgroup of̃G2(n,K). The elementsj20,0h ∈ G2(n,K)are second-order Tay-

lor polynomials ofK-diffeomorphismsh : (Kn,0)→ (Kn,0). The group law inG2(n,K)

is just the chain rule for first- and second-order differentials at 0 of the composition of two
K-diffeomorphisms. Notice that the group law in the larger groupĜ2(n,K) is formally the
same. IfK = C thenG2(n,C) is a closed complex Lie subgroup ofĜ2(n,C). The regular
submanifoldF2(M) ⊂ F̂2(M) given by those semi-holonomic frames withxkl j = xlk j is
aG2(n)-sub-bundleπ2

0 : F2(M)→ M, which is in fact (isomorphic to) the bundleF2(M)

of holonomic frames of second-order onM, given inSection 1(see[9,16,17,31]).
If j10,zϕ ∈ F̃2(M), thenπ1

0 ◦ϕ is a diffeomorphism and{ϕ∗(0) · (∂/∂rj)(0), j = 1, . . . , n}
is a horizontaln-basis. We define a map

ν̃ : j10,zϕ ∈ F̃2(M)→
{
ϕ∗(0) · ∂

∂r1
(0), . . . , ϕ∗(0) · ∂

∂rn
(0)

}
∈ StnHFM.

Identifying T0K
n and K

n, we can seẽν(j10,zϕ) as the horizontaln-basis{ϕ∗(0)E1, . . . ,

ϕ∗(0)En}.
Since we have seen inTheorem 4.1thatĤ2(M) andGnHFM are also diffeomorphic, we

can adapt the diffeomorphism given in[23] betweenF̂2(M) andĤ2(M) to define a map̂ν
given by

ν̂ : j10,z ∈ ϕF̂2(M)→
〈{
ϕ∗(0) · ∂

∂rj
(0), j = 1, . . . , n

}〉
∈ GnHFM.

Identifying T0K
n and K

n, we see that̂ν(j10,zϕ) is the horizontaln-planeϕ∗(0)(Kn) ⊂
Tz(FM).

Theorem 5.2. The mapsπ = ν̂−1 ◦ πH ◦ ν̃ : F̃2(M) → F̂2(M) andπH : StnHFM →
GnHF(M) are isomorphicGL(n,K)-principal bundles, via the bundle map

(ν̃, ν̂) : (F̃2M, F̂2M)→ (StnHFM,GnHFM).

Proof. If we consider in the local coordinates induced byM in F̃ 2(M), F̂2(M), StnHFM
andGnHFM , then we have that, locally, the mapν̃ is the identity (reflecting that̃F 2(M)
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andStnHFM are essentially identical) whereasν̂ is given by

ν̂([xi], X, [xij k]) = ([xi], X, [xij k]X−1).

Thus, bothν̃ andν̂ are diffeomorphisms. The action of GL(n,K) on F̃ 2(M) is defined as
follows: if L ∈ GL(n,K) andj10,zϕ ∈ F̃2(M), we define

(j10,zϕ)L = j10,z(ϕ ◦ L).

It is evident that the action is free. Letπ = ν̂−1 ◦ πH ◦ ν̃. The mapπ : F̃2(M)→ F̂2(M)

defines a structure of GL(n,K)-principal bundle. IfLij is the matrix ofL in the usual basis,
then

(ϕ ◦ L)∗(0) · ∂
∂rj
(0) = ∂ϕi

∂rs
(0)Lsj

∂

∂xi
(z)+ ∂ϕ

k
l

∂rs
(0)Lsj

∂

∂xkl
(z),

hence,̃ν((j10,zϕ)L) = (ν̃(j10,zϕ))L. �

As a consequence, we can see a non-holonomic frame of second-order atx ∈ M as a hori-
zontal tangentn-basis at somez in the fiber(π1

0)
−1(x) ⊂ F(M) andπ projects all horizontal

tangentn-bases generating the same horizontaln-spaceHz on the same semi-holonomic
frame of second-order atx ∈ M, which can be identified withHz. Geometrically, the first
copy of GL(n,K) in G̃2(n,K) moves non-holonomic frames along that fiber, whereas the
second copy just changes horizontal basis at a particular horizontal space. The action of
L2(n,K) is explained in the next section.

6. The bundles StnHF(M) and GnHF(M) are isomorphic to F̃2(M) and F̂2(M)

In [23] it is proved that the projection

πĤ1 : û(Hz) ∈ Ĥ2(M)→ z ∈ F(M)
is aL2(n,K)-principal bundle. Let us consider the analogous projection

πGH1 : Hz ∈ GnHFM → z ∈ F(M).

Theorem 6.1. The mapπGH1 : GnHFM → F(M) defines a principal bundle with struc-

ture groupL2(n,K). Moreover, it is isomorphic to theL2(n,K)-principal bundlesπĤ1 :

Ĥ2(M)→ F(M) andπ̂2
1 : F̂ 2(M)→ F(M).

Proof. The action ofL2(n,K) on GnĤF(M) is defined as follows: givenHz ∈ GnĤF(M)
andf ∈ Hom(Kn, gl(n,K)), then(Hz)f = H ′

z is the horizontal space atz spanned by
the vectorsθ−1

/Hz
(Ej)+ f(Ej)∗z , with j = 1, . . . , n. This action ofL2(n,K) is clearly free.

Furthermore, its transivity on the fiber appears in the study of Bernard’s structure tensor of
aG-structure onM, [2], see also[14, p. 41], where the linear mapf ∈ Hom(Kn, gl(n,K))
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such that(Hz)f = H ′
z is denoted bySH,H ′ . The action ofL2(n,K) on Ĥ2(M) is given by

û(Hz)f = û(H ′
z). On the other hand,L2(n,K) also acts onF̂ 2(M): if ([xi], [xij], [x

kl
j ])

are the coordinates ofj10,zϕ ∈ F̂ 2(M) let us putX = [xij] and identify ξ̄ = [x
ij
k ] ∈

Mn2×n(K) ≡ Hom(Kn, gl(n,K)) with its corresponding bilinear mapξ ∈ L2(n,K) with
components [xijk]. Then the action off ∈ L2(n,K) ≡ (idKn , f) ∈ Ĝ2(n,K) is given in
coordinates by

(j10,zϕ)f ≡ ([xi], X, ξ +X ◦ f).

In this way, the projectionπF̂1 : F̂ 2(M) → F(M) sending a semi-holonomic framej10,zϕ

atx = π1
0(z) to the linear framez defines a principal bundle with structure groupL2(n,K).

The map

û : GnHFM → Ĥ2(M)

defined inSection 4becomes an isomorphism ofL2(n,K)-principal bundles overF(M).
Moreover, the diffeomorphism

û ◦ ν̂ : F̂ 2(M)→ Ĥ2(M)

is a bundle isomorphism too. In fact, in local coordinates, we have thatû ◦ ν̂ is the identity
(it is just the map denoted asu in [23]). �

Theorem 6.2. The bundlesStnHFM → M andGnHFM → M are, respectively, isomor-
phic to the bundles̃F 2(M)→ M andF̂ 2(M)→ M of non-holonomic and semi-holonomic
frames of second-order on M.

Proof. If πP : P → M is aG-principal bundle andF : Q → P is a diffeomorphism,
then, the mapπQ : Q→ M defined byπQ = πP ◦ F is aG-principal bundle isomorphic
to πP : P → M with the actionQ ×G → Q given byqg = F−1(F(q)g). Our statement
follows from this fact and fromTheorems 5.2 and 6.1. �

7. Linear connections as reductions of F̂2(M)

Here we will give a new proof of a theorem of Libermann[24], that characterized linear
connections on a real manifold. For torsionless connections it was previously found by
Kobayashi[16] (see also[18]), de León and Ortacgil gave in[23] another proof using their
bundleĤ2(M) ⊂ F(FM). Ours will be moulded in the same idea, but we will instead
use the isomorphic bundleGnHFM of horizontaln-planes onF(M). With it the theorem
becomes almost a tautology. In order to assure that the proof will also work for complex
data, let us point out that ifM is a complex manifold,G a complex Lie group andH a
complex closed Lie subgroup ofG thenG/H is a complexG-homogeneous manifold and
the following fact is still true: each holomorphicH-reduction of a holomorphic principal
G-bundleπ : P → M determines in a bijective way a holomorphic global sectionσ : M →
E of the associated complex bundleE = P ×G (G/H) = P/H .
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Theorem 7.1. There exists a bijective correspondence between the set ofK-differentiable
linear connections of a real or complex manifold M and the set ofGL(n,K)-reductions of
its bundleF̂ 2(M) of semi-holonomic frames of second-order.

Proof. Let us recall that aK-differentiable linear connection onM is a K-differentiable
distributionD onF(M) (that is to say,C∞ if M is real, holomorphic ifM is complex) such
that, for everyz ∈ F(M),Dz is a horizontaln-plane andD is invariant under the action of the
group GL(n,K). Therefore,Q = {Dz; z ∈ F(M)} is a subset of thêG2(n,K)-principal bun-
dleGnHFM of horizontaln-planes onF(M), which is isomorphic toF̂ 2(M), by Theorem
6.2. Let us see thatQ is a GL(n,K)-reduction. It is clear thatQ is invariant under the
action of the closed subgroup GL(n,K). The differentiability ofD means that for each
z0 ∈ F(M) there exists an open neighborhoodV of z0 in F(M) andn independent hor-
izontal K-differentiable vector fieldsX1, . . . , Xn on V such that, for allz ∈ V , we have
Dz = 〈X1(z), . . . , Xn(z)〉. Thus,z ∈ V → Dz ∈ GnHFM is aK-differentiable local sec-
tion taking values inQ. It follows thatQ is a GL(n,K)-reduction, since we can use Lemma
1 in Chapter II of[19] (which is valid for real and complex data, because its proof depends
on the theorem of Frobenius, true in both cases). The converse is obvious. �

It is well-known that neither analytic connections on an analytic real manifold nor holo-
morphic connections on a complex manifoldM need to exist. A necessary and sufficient
condition for their existence was given by Atiyah[1]. Stein manifolds and complex Lie
groups admit holomorphic connections. If an analytic connection exists on a complex man-
ifold M, Theorem 7.1just says that it can be seen as a GL(n,C)-sub-bundle ofF̂ 2(M).

8. F̃ 2(M) and F̂ 2(M) as extensions of F 2(M)

Let us denotee1 = j10,0(idKn). It is well-known that the group̃G2(n,K), described in

Section 5, is isomorphic to the group of 1-jets of the formje1,Ψ̃e1Ψ̃ , whereΨ̃ : F(Kn)→
F(Kn) is a principal bundle isomorphism inducing the identity on GL(n,K), and such that
its underlying mapΨ : K

n → K
n satisfiesΨ(0) = 0[12]. Analogously, the group̂G2(n,K)

is isomorphic to the subgroup ofG̃2(n,K) given by

{j1
e1,Ψ̃e1

Ψ̃ ∈ G̃2(n,K); Ψ̃ (e1) = j10,0Ψ}.

Let Ψ̃ : (F(Kn), e1) → (F(M), z) be a principal bundle isomorphism, and letΨ :
(Kn,0) → (M, x) be the underlying map induced bỹΨ . The 1-jetj1e1,zΨ̃ can be iden-
tified with the tangent map

Ψ̃∗(e1) : Te1(FK
n) ≡ K

n ⊕ gl(n,K)→ Tz(FM).

It is well-known that such kind ofK-linear frames of the manifoldF(M) are just the
non-holonomic frames of second-order at the pointx = Ψ(0) ∈ M. If z = Ψ̃ (e1) =
j10,Ψ(0)Ψ , then the frame is semi-holonomic. The resulting non-holonomic and semi-

holonomic frame bundles will be denoted byF̃2(M) andF̂2(M). Of course,F̃2(M) and
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F̂2(M) are, respectively, isomorphic tõF 2(M) andF̂ 2(M). If Ψ : (M, x) → (N, y) is a
(local) diffeomorphism, we will denote by

F(1)Ψ : j10,xf ∈ F(M)→ j10,y(Ψ ◦ f) ∈ F(N)
its prolonged map between the bundle ofK-linear frames. Ifj1

e1,Ψ̃ (e1)
Ψ̃ is a semi-holonomic

frame of second-order and̃Ψ = F(1)Ψ , we will say that the frame is a holonomic frame of
second-order or, simply, a frame of second-order onM. The reason for this terminology is
that this bundleπ2

0 : F2(M)→ M of second-order frames overM is a principal bundle of
group

{j1
e1,Ψ̃ (e1)

Ψ̃ ∈ Ĝ2(n,K); Ψ̃ = F(1)Ψ}

which is isomorphic toG2(n,K). Moreover,F2(M) and F2(M) are isomorphic as
G2(n,K)-principal bundles overM. From this point of view, the product iñG2(n,K),
Ĝ2(n,K) andG2(n,K) as well as the respective actions of these groups onF̃2(M), F̂2(M)

andF2(M) are given by composition of jets. In local coordinates, an element(xi, xij, y
i
j, x

i
jk)

of F̃2(M) belongs toF2(M) if and only if yij = xij andxijk = xikj.

Let us consider now the manifoldF2(M) × G̃2(n,K). If p = j1
e1,Ψ̃ (e1)

Ψ̃ ∈ F2(M) and

k = j1
e1,Φ̃(e1)

Φ̃ ∈ G̃2(n,K), then, we will denote bypk = j1
e1,Ψ̃◦Φ̃(e1)(Ψ̃ ◦ Φ̃) the restriction

of the action ofG̃2(n,K) on F̃2(M).

Definition 8.1. Let π : P → M be a (holomorphic) differentiable principal bundle with
(complex) structure Lie groupG, and let us suppose thatG is a (complex) Lie subgroup
of a (complex) Lie groupK. LetPK = P ×G K = P × K/ ∼ be the quotient (complex)
manifold obtained fromP ×K and the equivalence relation

(p, k) ∼ (p′, k′)⇔ there existsa ∈ G such thatp′ = pa, k′ = a−1k.

We will denote as [(p, k)] the equivalence class of (p, k) and by pr :(p, k) ∈ P × K →
[(p, k)] ∈ PK the quotient map. The associated bundle

πK : [(p, k)] ∈ PK → π(p) ∈ M
is known as the extension ofP by the groupK.

It is immediate thatπK : PK → M is a (holomorphic)K-principal bundle. Let us remark
that ifA ⊂ M is open andτ : p ∈ π−1(A)→ (x, g) ∈ A×G is a local trivialization ofP ,
thenτK : [(p, k)] ∈ (πK)−1(A)→ (x,gk) ∈ A×K is a local trivialization ofPK.

Theorem 8.2. (a)The mapϑ : [(p, k)] ∈ F2(M)G̃
2(n,K) → pk ∈ F̃2(M) is an isomorphism

of G̃2(n,K)-principal bundles. (b) The mapϑ : [(p, k)] ∈ F2(M)Ĝ
2(n,K) → pk ∈ F̂2(M)

is an isomorphism of̂G2(n,K)-principal bundles.

Proof. (a) First of all,ϑ is well defined: if (p, k), (p′, k′) ∈ F2(M) × G̃2(n,K) and
a ∈ G2(n,K) verify p′ = pa andk′ = a−1k, thenp′k′ = paa−1k = pk. Let us take



444 A. Martı́n Méndez, J.F. Torres Lopera / Journal of Geometry and Physics 47 (2003) 427–446

(p, k), (p′, k′) ∈ F2(M)×G̃2(n,K) such thatpk = p′k′. In order to prove thatϑ is injective,
we must finda ∈ G2(n,K) such thatp′ = pa andk′ = a−1k. It is enough to prove that
a = k(k′)−1 ∈ G2(n,K), sincepk = p′k′ if and only if pk(k′)−1 = p′. Moreover, it is
enough to show that ifp, p′ ∈ F2(M)andh ∈ G̃2(n,K) verifyp′ = ph, thenh ∈ G2(n,K),
or, what is the same, thatp andp′ lie in the same fiber ofF2(M)→ M. Butp andp′ lie in
the same fiber of̃F2(M) → M, and that follows from the fact that the action ofG̃2(n,K)

on F̃2(M) is free. Next, forp = j1
e1,Ψ̃ (e1)

Ψ̃ ∈ F2(M), let F(1)Ψ : F(Kn) → F(M) be

the prolonged map of the induced mapΨ : K
n → M. SinceF(1)Ψ also inducesΨ , then

q = j1
e1,F

(1)Ψ(e1)
F (1)Ψ ∈ F2(M) andp lie in the same fiber of̃F2(M) → M. Thus, there

existsk ∈ G̃2(n,K) such thatp = qk andϑ([(q, k)]) = p. Hence,ϑ is surjective. On the
other hand, it is immediate thatϑ([(p, kk′)]) = ϑ([(p, k)])k′ for p ∈ F2(M) andk, k′ ∈
G̃2(n,K). Moreover, ifi : F2(M)×G̃2(n,K)→ F̃2(M)×G̃2(n,K) denotes the inclusion
andR : F̃2(M)×G̃2(n,K)→ F̃2(M) denotes the action, it follows thatϑ is differentiable,
sinceϑ ◦pr = R◦ i and pr is a submersion. Finally, let us prove that, in local coordinates,ϑ

is the identity. If(p, k) ∈ F2(M)× G̃2(n,K), with x = π2
0(p) andk = (aij, bij, cijk), we can

considerp as an element of̃F2(M) whose coordinates(xi, xij, y
i
j, x

i
jk) satisfyxij = yij and

xijk = xikj. In the trivialization induced by a chart ofM, the fiber part [(p, k)] has coordinates

(xij, x
i
j, x

i
jk)(a

i
j, b

i
j, c

i
jk), by virtue of the remark after Definition 8.1. The product at the

second component is the product inG̃2(n,K). Furthermore, ifp = j1
e1,Ψ̃ (e1)

Ψ̃ ∈ F2(M)

andk = j1
e1,Φ̃(e1)

Φ̃ ∈ G̃2(n,K), then the coordinates ofpk = j1
e1,Ψ̃ (Φ̃(e1))

(Ψ̃ ◦ Φ̃) are the

previous ones, sincẽπ2
0(pk) = π̃2

0(p) = Ψ(0) and the product of̃G2(n,K) is given by jet
composition. So, in coordinates,ϑ is the identity and, therefore,ϑ is an isomorphism of
bundles. The proof of (b) is completely analogous. �

Let us point out thatTheorem 8.2allows us to give a different proof of Libermann’s
Theorem 7.1 as follows: sinceG1(n,K) = GL(n,K) is a (complex whenK = C) closed Lie

subgroup ofĜ2(n,K), it follows that eachG1(n,K)-reduction ofF̂2(M) = F2(M)Ĝ
2(n,K)

determines a global sectionΓ : M → E (holomorphic whenK = C andM is complex)
whereE is the associated bundle

E = F2(M)Ĝ
2(n,K) ×

Ĝ2(n,K)
Ĝ2(n,K)/G1(n,K).

If we consider the trivializations ofE associated to an atlas onM and we readΓ through
them, we obtain that the fiber part ofΓ(x) behaves under change of coordinates as (bilinear
maps associated to) Christoffel’s symbols atx do, determining therefore a linear connection
onM. Conversely, each (holomorphic) linear connection on a (complex) manifoldM gives
rise, via its (holomorphic) Christoffel’s symbols, to a (holomorphic) global sectionΓ :
M → E and therefore to aG1(n,K) = GL(n,K)-reduction ofF̂2(M).

In fact, this argument is theextensionof that used by Kobayashi[16,18] to prove
that torsionless connections on a real manifold are in bijective correspondence with the
GL(n,R)-reductions ofF2(M) [16,18]. Christoffel’s symbols symmetry in the torsionless
case is due to symmetry of the bilinear part of the elements in the smaller groupG2(n,R).
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Finally, let us say that bundles of non-holonomic and semi-holonomic higher order frames
can be defined inductively[11,24,31]. The isomorphism given byTheorem 8.2can be
generalized in that way to higher order bundles, since the analogous maps in (a) and (b) are
naturally defined at any order.
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A. Martiń Méndez was partially supported by Xunta de Galicia and Ministerio de Cien-
cia y Tecnología, Research Projects XUGA-32203A97 and BFM2000-0513-C02-02. J.F.
Torres Lopera was partially supported by Xunta de Galicia, Research Project PGIDT01PXI-
20704PR.

References

[1] M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc. 85 (1957) 181–207.
[2] D. Bernard, Sur la geometrie differentielle desG-structures, Ann. Inst. Fourier 10 (1960) 151–270.
[3] G. Burdet, M. Perrin, Cartan structures on contact manifolds, Trans. Am. Math. Soc. 265 (1981) 563–602.
[4] Ch. Ehresmann, Les prolongements d’une variété différentiable. I. Calcul des jets, prolongement principal.

II. L’espace des jets d’ordre r deVn dansVm. III. Transitivité des prolongements, C. R. Acad. Sci. (Paris)
233 (1951) 598–600, 777–779, 1081–1083.

[5] Ch. Ehresmann, Les prolongements d’une variété différentiable. IV. Éléments de contact et éléments
d’envelope, C. R. Acad. Sci. (Paris) 234 (1952) 1028–1030.

[6] Ch. Ehresmann, Les prolongements d’une variété diférentiable. V. Covariants différentiels et prolongements
d’une structure infinitésimale, C. R. Acad. Sci. (Paris) 234 (1952) 1424–1425.

[7] Ch. Ehresmann, Structures locales et structures infinitésimales, C. R. Acad. Sci. (Paris) 234 (1952) 587–589.
[8] Ch. Ehresmann, Introduction à la théorie des structures infinitésimales et des pseudogroupes de Lie, Colloques

Internat., Centre Nat. Rech. Sci. 52 (1953) 97–110.
[9] Ch. Ehresmann, Extension du calcul des jets aux jets non holonomes, C. R. Acad. Sci. (Paris) 239 (1955)

1762–1764.
[10] Ch. Ehresmann, Applications de la notion de jet non-holonome, C. R. Acad. Sci. (Paris) 240 (1955) 397–399.
[11] M. Elzanowski, S. Prishepionok, Connections on higher order frame bundles, New Developments in

Differential Geometry, Kluwer Academic Publishers, Dordrecht, 1996, pp. 131–142.
[12] M. Epstein, M. de León, The differential geometry of Cosserat media, New Developments in Differential

Geometry, Kluwer Academic Publishers, Dordrecht, 1996, pp. 143–164.
[13] M. Epstein, M. de León, Continuous distributions of inhomogeneities in liquid-crystal-like bodies, Proc. R.

Soc. Lond. 457 (2001) 2507–2520.
[14] A. Fujimoto, Theory ofG-structures, Publications of the Study Group of Geometry, vol. I, Okayama, 1972.
[15] T. Hangan, Analogies entre la géométrie différentielle de l’espace projectif et celle la variété de Grassmann,

Atti dil Convegno Internazionale di Geometria Diff., vol. IX, Bologna, 1967, pp. 201–211.
[16] S. Kobayashi, Canonical forms on frame bundles of higher order contact, in: Proceedings of the Symposium

on Pure Mathematics, vol. 3, AMS, Providence, RI, 1961, pp. 186–193.
[17] S. Kobayashi, Transformations Groups in Differential Geometry, Springer, Berlin, 1972.
[18] S. Kobayashi, T. Nagano, On projective connections, J. Math. Mech. 13 (1964) 215–236.
[19] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. I, Interscience, New York, 1963.
[20] I. Kolar, P. Michor, J. Slovak, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[21] M. de León, M. Epstein, The geometry of uniformity in second-grade elasticity, Acta Mech. 114 (6) (1996)

1343–1373.
[22] M. de León, M. Epstein, Geometrical theory of uniform Cosserat media, J. Geom. Phys. 26 (1–2) (1998)

127–170.



446 A. Martı́n Méndez, J.F. Torres Lopera / Journal of Geometry and Physics 47 (2003) 427–446

[23] M. de León, E. Ortacgil, On frames defined by horizontal spaces, Czech. Math. J. 46 (121) (1996) 241–248.
[24] P. Libermann, Sur la Géométrie des prolongements des spaces fibrés vectoriels, Ann. Inst. Fourier 14 (1)

(1964) 145–172.
[25] P. Libermann, Introduction to the theory of semi-holonomic jets, Arch. Math., Brno 32 (3) (1996) 173–189.
[26] T. Ochiai, Geometry associated with semisimple flat homogeneous spaces, Trans. Am. Math. Soc. 152 (1970)

159–193.
[27] T. Ochiai, A survey on holomorphicG-structures, in: Proceedings of the 1980 Beijing Symposium on

Differential Geometry and Differential Equations, Science Press and Gordon and Breach, 1982, pp. 735–786.
[28] I.M. Singer, S. Sternberg, On the infinite groups of Lie and Cartan, Ann. Inst. Fourier 15 (1965) 1–114.
[29] C.L. Terng, Natural vector bundles and natural differential operators, Am. J. Math. 100 (1978) 775–823.
[30] H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, MA, 1972.
[31] P.Ch. Yuen, Higher order frames and linear connections, Cah. Topol. Geom. Differ. XII (3) (1971) 333–371.


	Non-holonomic and semi-holonomic frames in terms of Stiefel and Grassmann tangent bundles
	Introduction
	Stiefel and Grassmann tangent bundles over a manifold
	Horizontal spaces and bases of horizontal spaces
	Linear frames on F(M) defined by horizontal bases and by horizontal spaces
	Non-holonomic and semi-holonomic frames of second-order
	The bundles StnHF(M) and GnHF(M) are isomorphic to F~2(M) and F2(M)
	Linear connections as reductions of F2(M)
	F~2(M) and F2(M) as extensions of F2(M)
	Acknowledgements
	References


